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The dynamics of light particles in chaotic oscillating cellular flows is investigated both analytically and
numerically by means of Monte Carlo simulations. At level of linear analysis �in the oscillation amplitude� we
determined how the known fixed points relative to the stationary cellular flow deform into closed stable
trajectories. Once the latter have been analytically determined, we numerically show that they possess the
dynamical role of attracting all asymptotic trajectories for a wide range of parameters values. The robustness
of the attracting trajectories is tested by adding a white-noise contribution to the particle equation of motion. As
a result, attracting trajectories persist up to a critical Péclet number above which an average rising velocity sets
in. Possible implications of our results on the long-standing problem related to the explanation of the observed
oceanic plankton patchiness will be also discussed.
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In this Rapid Communication we study the behavior of
light particles in unsteady cellular flow fields. From a dy-
namical point of view, the flow time dependence is expected
to produce dramatic effects on the particle dispersion. With
regard to neutral particles �i.e., having the same density as
that of the surrounding fluid� such effects have been clearly
shown in �1� as a manifestation of resonance mechanisms
eventually leading to anomalous transport �2,3�.

Here, we do not focus on dispersion but rather on the
rising process under gravity of particles having a density
slightly smaller than that of the surrounding fluid �i.e., the
counterpart of sedimentation occurring for particles having a
density slightly larger than that of the surrounding fluid�. For
long enough time intervals, the rising process is the most
effective transport mechanism, molecular and eddy diffusion
being subleading due to the t1/2 behavior of the variance of
particle displacement. Why we consider this particular re-
gime is motivated by two different reasons. First, the dynam-
ics of particles slightly lighter than the surrounding fluid has
attracted little attention, especially if compared with the lim-
iting cases of heavy and very light �i.e., bubbles in water�
particles. Second, this situation seems to be very attractive in
the realm of oceanic sciences and ecology in connection to
the understanding of phytoplankton distribution �4,5�. In
many instances �the cyanobacteria is probably the best ex-
ample� phytoplankton can indeed reduce its own original
density by maintaining gas-filled space within the protoplast
thus acquiring, in life, a positive buoyancy. For a review of
mechanisms acting to reduce phytoplankton density we refer
to �6�.

Our main aims here are twofold. We will first investigate
how chaos here induced by oscillations of cell position even-
tually alters the structure of the fixed points calculated in �7�
for the static case �i.e., a time-independent cellular flow�.
The role of chaos on the spatial distribution of inertial par-
ticles has also been addressed in Ref. �8� with the goal of
investigating autocatalytic reactions. The flow field consid-
ered there is however different from the one we will intro-
duce in the sequel.

We will successively show how the resulting limit cycles
�into which the static fixed points deform as a consequence

of time dependence we introduced in the cellular flow� con-
stitute a set of attracting trajectories where, after a transient
time, all particles fall. This latter situation is associated to a
vanishing particle mean rising velocity.

To start our analysis, let us consider the two-dimensional
velocity field u��ux ,uy� �in units of the velocity amplitude
U�

ux = sin�x�cos�y + B sin��t�� ,

uy = − cos�x�sin�y + B sin��t�� �1�

defined by the stream function

��x,y� � sin�x�sin�y + B sin��t�� . �2�

This flow is a simple model for transport in time-periodic
Rayleigh-Bénard convection �1,9� and Langmuir cells �10�.
The stream function �2� describes a single-mode two-
dimensional convection in squared cells of side 2� �in units
of L�1 /k, k being the cell wave number� with rigid bound-
ary condition. The term B sin��t� �times are in units of L /U�
mimics possible oscillatory instabilities �e.g., the even oscil-
latory instability in Rayleigh-Bénard convection �11�� here
represented in the form of vertical roll oscillations. The re-
sulting flow field is thus intimately time dependent and ex-
hibits Lagrangian chaos �12�.

Our interest here is on the particle tracking under gravity
of small spherical particles of radius a and mass mp plugged
into the flow field �Eq. �1��. The resulting dynamical equa-
tions are �7,13�

mp
dV

dt
= �mp − mf�g + mf

Du

Dt
„X�t�,t…

−
1

2
mf

d

dt
�V�t� − u„X�t�,t…�

− 6�a��V�t� − u„X�t�,t…� , �3�

where V�t��V(X�t�) is the particle velocity along its trajec-
tory X�t�, defined by the equation
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dX

dt
= V„X�t�… , �4�

g is the gravitational acceleration, mf is the mass of the dis-
placed fluid, � is the dynamic viscosity of the fluid, and the
meaning of d /dt and D /Dt are the “particle” and “fluid”-
associated Lagrangian derivatives, respectively. The coordi-
nates x and y are aligned to the cells boundaries and gravity
points along the negative y axis.

As customary, the particle velocity equation can be recast
in dimensionless form upon introducing the Stokes number
�St�, the Froude number �Fr�, and � as

St �
U�

L
, Fr �

U
�gL

, � �
3� f

2�p + � f
,

where �p and � f are the particle density and fluid density,
respectively. Finally, � is the Stokes time, ��� fa

2 / �3���.
The parameter � ranges between 0 �heavy particle limit� and
3 corresponding to a vanishing particle density. The �=1
value corresponds to the neutral particle case �14,15�.

In terms of the above dimensionless quantities, the par-
ticle equation of motion becomes

dV

dt
= �

du

dt
„X�t�,t… +

�1 − ��
Fr2 ĝ −

�V�t� − u„X�t�,t…�
St

+
2

3
��u„X�t�,t… − V�t�� · �u„X�t�,t… . �5�

We are now in the position to determine how the fixed points
calculated in �7� for the static case B=0 �obtained by impos-
ing the condition dV /dt=0 in Eq. �5�� eventually deform
into closed trajectories due to the effect of the vertical cell
oscillation. The answer to this question is a priori not obvi-
ous owing to the chaoticity of the flow �Eq. �1�� whose mix-
ing effects on the particle trajectories might destroy the
structure of the fixed points.

Let us suppose that the cell oscillation �with amplitude B
and pulsation �� modifies the fixed points relative to the case
B=0 in a way that the particle now performs a closed path
around a given B=0 fixed point, rotating around it with the
same flow pulsation �. Whether or not the pulsation has to
be equal to � will be numerically verified a posteriori.

According to the above assumptions, let us take the fol-
lowing particle evolution:

X�t� = x0 + axB cos��t� + bxB sin��t� ,

Y�t� = y0 + ayB cos��t� + byB sin��t� , �6�

where �x0 ,y0� is the generic fixed point for the B=0 case �7�.
In order to obtain the four unknown coefficients ax, bx, ay,

and by, we plug Eq. �6� into Eq. �5�. Linearizing the resulting
equation for small Bs �with respect to the cell size� and re-
calling that �x0 ,y0� satisfies the fixed point equation for B
=0, the resulting equations read as

f1 cos��t� + f2 sin��t� = 0,

f3 cos��t� + f4 sin��t� = 0, �7�

where f1, f2, f3, and f4 �all functions of ax, bx, ay and by� are
given by

f1 = − 	C + St�2 +
2

3
�St cos�2x0�
ax + Day

+ �	1 −
1

3
�StC
bx +

1

3
��StDby + ��StD ,

f2 = − �	1 −
1

3
�StC
ax −

1

3
��StDay

− 	C + St�2 +
2

3
�St cos�2x0�
bx + Dby + D ,

f3 = − Dax + 	C − St�2 −
2

3
�St cos�2y0�
ay

−
1

3
��StDbx + �	1 +

1

3
�StC
by + ��StC ,

f4 =
1

3
��StDax + − �	1 +

1

3
�StC
ay − Dbx + 	C − St�2

−
2

3
�St cos�2y0�
by + C −

2

3
�St cos�2y0� ,

and we have defined C�cos�x0�cos�y0� and D
�sin�x0�sin�y0�.

By virtue of orthogonality of sine-cosine basis, system �7�
leads to four nonhomogeneous linear equations for ax, bx, ay,
and by. Namely,

f1�ax,bx,ay,by� = 0,

f2�ax,bx,ay,by� = 0,

f3�ax,bx,ay,by� = 0,

f4�ax,bx,ay,by� = 0. �8�

By simple algebra, the solution of the above linear system
can be easily obtained. Its expression is quite lengthy and not
particularly expressive. For these reasons it will not be re-
ported here.

As announced in the introductory part, let us focus on the
case of particles lighter than the surrounding fluid. Our
choice for the parameter � is in the whole range �1,3� al-
though here, for the sake of brevity, we report and discuss
the sole case �=1.5 �i.e., � f =2�p�. The latter, for the static
case, has been considered in �16�. For such value we know
that the fixed points found in �7� are stable provided St is
sufficiently small. For this reason we take St=0.05 whose
value also ensures �13� the validity of approximations lead-
ing to the dynamical equation �5�.

The analytical solution of Eq. �8� being now available, let
us now pass both to verify its validity or accuracy and to
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address the question on whether or not the trajectories asso-
ciated to the solution of Eq. �8� have a dynamical meaning.
This latter issue is equivalent to ask whether such trajectories
actually attract the long-time evolution of all particle trajec-
tories. In order to answer these questions we have to resort to
numerical simulations. The latter are performed by means of
Monte Carlo simulations: we solve Eq. �5� by seeding the
flow-field �Eq. �1�� by �up to� 106 particles. Time is advanced
exploiting the Milstein’s method �17� which easily permits to
take into account white-noise contributions we will add later
on the right-hand side �rhs� of Eq. �1�.

The accuracy of the analytical trajectories having form �6�
can be detected from Fig. 1. There, for a particle starting
very close to the static �i.e., B=0 case� fixed point predicted
in �7�, we have reported �bullets� its time evolution and com-
pared that with our analytical prediction �continuous line�.
The central bullet identifies the static fixed point. The agree-
ment is good despite the value of order unity we used for B,
close enough to that of the cell size. As far as the dependence
in � is concerned, similar pictures are observed �not shown�
for the whole �1,3� � range and values of � and St around

those shown in the above picture. The way through which
static fixed points deform thus seems sufficiently robust.

We are now in the position to answer the question on
whether the trajectories around the static fixed points are
attractors for the dynamics. To show that this is indeed the
case, up to a critical value of B, we follow the dynamics of
many particles �up to 106� and compute, at each time, the
averaged vertical coordinate of our particles ensemble. Let
us denote this time-dependent average by ya. Its behavior is
shown in Fig. 2 for different values of the cell oscillation
amplitude. We can see the existence of a critical value for B,
in between 8 and 9, separating the regime of nonrising par-
ticles �B	8� from that �B
9� where particles are observed
to rise with a well-defined mean vertical velocity �in general
different from the raising velocity in still fluid �18��. For B
	8 we observed that all particles, after a transient, collapse
on the attracting trajectories, which, at least for sufficiently
small oscillation amplitudes, are well captured by our ana-
lytical expressions. We show in Fig. 3 this relaxation process
for a given particle of the ensemble. With respect to Fig. 1,
the only difference is in the initial position of the testing
particle, here not necessarily in the vicinity of the static fixed
point. For values of B larger than 9 the attracting trajectories
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FIG. 2. The averaged vertical position of the particles ensemble
as a function of time for four values of B. Parameters: �=1, St
=0.05, Fr=1, and �=1.5. Note the crossover from a nonrising re-
gime to a rising one for B� �8,9�.
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FIG. 4. The averaged vertical position of the particles ensemble
as a function of time for four values of Pe. Parameters: �=1, St
=0.05, Fr=1, B=1, and �=1.5. Note the crossover from a nonrising
regime to a rising one occurring for Pe� �550,750�.
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FIG. 1. Particle time evolution �the sampling time is 1/8 of the
period of the orbit� from a Monte Carlo simulation �bullets� and the
analytical trajectory obtained by solving Eq. �8� �continuous line�.
Parameters: �=1, St=0.05, B=1, Fr=1, and �=1.5. The bullet in-
side the closed trajectory is the static �B=0� fixed point.
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FIG. 3. Particle time evolution from a Monte Carlo simulation.
Note how, after a transient, the particle falls on the analytically
determined attracting trajectory. Parameters: �=1, St=0.05, B=1,
Fr=1, and �=1.5.
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go to breakdown. This appears as a result of a growing pro-
cess of the attracting trajectories which become larger and
larger as B increases until they reach the horizontal size of
the cell. This happens just in between B=8 and B=9.

In order to check further the robustness of attracting tra-
jectories we add on the rhs of Eq. �5� a white-noise contri-
bution with coefficient 2 / �PeSt2�1/2, Pe being the Péclet
number. Physically, this is a standard way to model Brown-
ian contributions to the deterministic particle dynamics �18�.

Our question is on whether even a small amount of ran-
domness might destroy the emergence of attracting trajecto-
ries. From our Monte Carlo simulations this does not seem
the case. In Fig. 4 we show the averaged vertical position of
the particles ensemble as a function of time for different
values of Pe. We note how, for Pe�750 the averaged rising
velocity remains zero. This phenomenon is still associated to
the existence of attracting trajectories whose geometrical
shape can be seen as a random perturbation of the attracting
trajectories determined in the absence of noise. The single
trajectory around the static fixed point found for the fully
deterministic case is thus replaced by a patchiness particles

distribution spread around the fixed point. As expected, at-
tracting trajectories disappear for sufficiently large noise
�Pe	750 in our simulations�.

Let us now conclude with some remarks emphasizing
some possible implications of our results in applied contexts
with a special emphasis to ecology. In this latter field, one of
the long-standing problems is on the understanding of the
very origin of plankton patchiness observed in the ocean in
the form of persistent structures irrespective of the mixing
induced by turbulent diffusion �19�. By means of a simple
chaotic cellular flow field, we show both analytically and
numerically the existence of attracting trajectories where par-
ticles lighter than the surrounding fluid asymptotically stay.

Such trajectories are found to exist irrespective of the
mixing induced both by chaos and by molecular or eddy
diffusion.

Our results thus seem to suggest that phytoplankton
patchiness may have a dynamical explanation where the key
ingredients are the smallness of density difference between
fluid and phytoplankton, the light character of the phy-
toplankton and, finally, its inertia.
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